Search results
Results from the WOW.Com Content Network
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
In addition to graphing both equations and inequalities, it also features lists, plots, regressions, interactive variables, graph restriction, simultaneous graphing, piecewise function graphing, recursive function graphing, polar function graphing, two types of graphing grids – among other computational features commonly found in a ...
Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 . Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities ...
A pictorial representation of a simple linear program with two variables and six inequalities. The set of feasible solutions is depicted in yellow and forms a polygon, a 2-dimensional polytope. The optimum of the linear cost function is where the red line intersects the polygon.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are:
Among the keywords you can find in Connecticut law include "silly string," "balloons" and "arcade games." All these topics are involved in some of the state's strangest laws.
In the case of two variables, each solution may be interpreted as the Cartesian coordinates of a point of the Euclidean plane. The solutions of a linear equation form a line in the Euclidean plane, and, conversely, every line can be viewed as the set of all solutions of a linear equation in two variables.