Search results
Results from the WOW.Com Content Network
Momentum depends on the frame of reference, but in any inertial frame it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change. Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics ...
In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p 1, and a subsequent momentum is p 2, the object has received an impulse J: =. Momentum is a vector quantity, so impulse is also a vector quantity.
A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the conservation of momentum. However, the definition of momentum is modified. Among the consequences of this is the fact that the more quickly a body moves, the harder it is to accelerate, and so, no matter how much force is applied, a body cannot ...
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Conservation of momentum requires m b v b = m t v t. Solving for the target's velocity gives v t = m b v b / m t = 0.016 kg × 360 m/s / 77 kg = 0.07 m/s = 0.17 mph. This shows the target, with its great mass, barely moves at all. This is despite ignoring drag forces, which would in reality cause the bullet to lose energy and momentum in flight.
Small steel balls work well because they remain efficiently elastic with little heat loss under strong strikes and do not compress much (up to about 30 μm in a small Newton's cradle). The small, stiff compressions mean they occur rapidly, less than 200 microseconds, so steel balls are more likely to complete a collision before touching a ...
Momentum space is the set of all momentum vectors p a physical system can have; the momentum vector of a particle corresponds to its motion, with units of [mass][length][time] −1. Mathematically, the duality between position and momentum is an example of Pontryagin duality .
In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]