enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    The propositions for the degree of sums and products of polynomials in the above section do not apply, if any of the polynomials involved is the zero polynomial. [8] It is convenient, however, to define the degree of the zero polynomial to be negative infinity, , and to introduce the arithmetic rules [9]

  3. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    With modern computers and programs, deciding whether a polynomial is solvable by radicals can be done for polynomials of degree greater than 100. [6] Computing the solutions in radicals of solvable polynomials requires huge computations. Even for the degree five, the expression of the solutions is so huge that it has no practical interest.

  4. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    The largest zero of this polynomial which corresponds to the second largest zero of the original polynomial is found at 3 and is circled in red. The degree 5 polynomial is now divided by () to obtain = + + which is shown in yellow. The zero for this polynomial is found at 2 again using Newton's method and is circled in yellow.

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]

  6. Classical modular curve - Wikipedia

    en.wikipedia.org/wiki/Classical_modular_curve

    Knot at infinity of X 0 (11) The classical modular curve, which we will call X 0 (n), is of degree greater than or equal to 2n when n > 1, with equality if and only if n is a prime. The polynomial Φ n has integer coefficients, and hence is defined over every field. However, the coefficients are sufficiently large that computational work with ...

  7. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    If a and b are rational numbers, the equation x 5 + ax + b = 0 is solvable by radicals if either its left-hand side is a product of polynomials of degree less than 5 with rational coefficients or there exist two rational numbers ℓ and m such that

  8. Purely inseparable extension - Wikipedia

    en.wikipedia.org/wiki/Purely_inseparable_extension

    An algebraic extension is a purely inseparable extension if and only if for every , the minimal polynomial of over F is not a separable polynomial. [1] If F is any field, the trivial extension is purely inseparable; for the field F to possess a non-trivial purely inseparable extension, it must be imperfect as outlined in the above section.

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The equation of a line in a Euclidean plane is linear, that is, it equates a polynomial of degree one to zero. So, the Bézout bound for two lines is 1, meaning that two lines either intersect at a single point, or do not intersect. In the latter case, the lines are parallel and meet at a point at infinity.