Search results
Results from the WOW.Com Content Network
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
If a and b are rational numbers, the equation x 5 + ax + b = 0 is solvable by radicals if either its left-hand side is a product of polynomials of degree less than 5 with rational coefficients or there exist two rational numbers ℓ and m such that
Knot at infinity of X 0 (11) The classical modular curve, which we will call X 0 (n), is of degree greater than or equal to 2n when n > 1, with equality if and only if n is a prime. The polynomial Φ n has integer coefficients, and hence is defined over every field. However, the coefficients are sufficiently large that computational work with ...
With modern computers and programs, deciding whether a polynomial is solvable by radicals can be done for polynomials of degree greater than 100. [6] Computing the solutions in radicals of solvable polynomials requires huge computations. Even for the degree five, the expression of the solutions is so huge that it has no practical interest.
The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]
For example, a polynomial of degree n has a pole of degree n at infinity. The complex plane extended by a point at infinity is called the Riemann sphere . If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its ...
The equation of a line in a Euclidean plane is linear, that is, it equates a polynomial of degree one to zero. So, the Bézout bound for two lines is 1, meaning that two lines either intersect at a single point, or do not intersect. In the latter case, the lines are parallel and meet at a point at infinity.
In this case, the product of the degrees of the polynomials may be much larger than the number of roots, and better bounds are useful. Multi-homogeneous Bézout theorem provides such a better bound when the unknowns may be split into several subsets such that the degree of each polynomial in each subset is lower than the total degree of the ...