Search results
Results from the WOW.Com Content Network
Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions (common in human-entered data, such as measurements or financial information) and binary (base-2) fractions. The advantage of decimal floating-point representation over decimal fixed-point and ...
Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures Approximating a large decimal integer using ...
The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be represented exactly using a decimal base (0.2, or 2 × 10 −1).
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
Python: the built-in int (3.x) / long (2.x) integer type is of arbitrary precision. The Decimal class in the standard library module decimal has user definable precision and limited mathematical operations (exponentiation, square root, etc. but no trigonometric functions). The Fraction class in the module fractions implements rational numbers ...
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Integers between 2 24 =16777216 and 2 25 =33554432 round to a multiple of 2 (even number) Integers between 2 25 and 2 26 round to a multiple of 4... Integers between 2 n and 2 n+1 round to a multiple of 2 n-23... Integers between 2 127 and 2 128 round to a multiple of 2 104; Integers greater than or equal to 2 128 are rounded to "infinity".