Search results
Results from the WOW.Com Content Network
Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation ...
When facts are aggregated, it is either done by eliminating dimensionality or by associating the facts with a rolled up dimension. Rolled up dimensions should be shrunken versions of the dimensions associated with the granular base facts. This way, the aggregated dimension tables should conform to the base dimension tables. [2]
Transaction fact tables record facts about a specific event (e.g., sales events) Snapshot fact tables record facts at a given point in time (e.g., account details at month end) Accumulating snapshot tables record aggregate facts at a given point in time (e.g., total month-to-date sales for a product) Fact tables are generally assigned a ...
Aggregate data is high-level data which is acquired by combining individual-level data. For instance, the output of an industry is an aggregate of the firms’ individual outputs within that industry. [1] Aggregate data are applied in statistics, data warehouses, and in economics. There is a distinction between aggregate data and individual data.
The snowflake schema is represented by centralized fact tables which are connected to multiple dimensions. "Snowflaking" is a method of normalizing the dimension tables in a star schema. When it is completely normalized along all the dimension tables, the resultant structure resembles a snowflake with the fact table in the middle. The principle ...
The integrated data are then moved to yet another database, often called the data warehouse database, where the data is arranged into hierarchical groups, often called dimensions, and into facts and aggregate facts. The combination of facts and dimensions is sometimes called a star schema. The access layer helps users retrieve data. [5]
Facts are typically (but not always) numeric values that can be aggregated, and dimensions are groups of hierarchies and descriptors that define the facts. For example, sales amount is a fact; timestamp, product, register#, store#, etc. are elements of dimensions.
Aggregations are built from the fact table by changing the granularity on specific dimensions and aggregating up data along these dimensions, using an aggregate function (or aggregation function). The number of possible aggregations is determined by every possible combination of dimension granularities.