Search results
Results from the WOW.Com Content Network
When facts are aggregated, it is either done by eliminating dimensionality or by associating the facts with a rolled up dimension. Rolled up dimensions should be shrunken versions of the dimensions associated with the granular base facts. This way, the aggregated dimension tables should conform to the base dimension tables. [2]
Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation ...
Transaction fact tables record facts about a specific event (e.g., sales events) Snapshot fact tables record facts at a given point in time (e.g., account details at month end) Accumulating snapshot tables record aggregate facts at a given point in time (e.g., total month-to-date sales for a product) Fact tables are generally assigned a ...
Aggregate data is high-level data which is acquired by combining individual-level data. For instance, the output of an industry is an aggregate of the firms’ individual outputs within that industry. [1] Aggregate data are applied in statistics, data warehouses, and in economics. There is a distinction between aggregate data and individual data.
The snowflake schema is represented by centralized fact tables which are connected to multiple dimensions. "Snowflaking" is a method of normalizing the dimension tables in a star schema. When it is completely normalized along all the dimension tables, the resultant structure resembles a snowflake with the fact table in the middle. The principle ...
The integrated data are then moved to yet another database, often called the data warehouse database, where the data is arranged into hierarchical groups, often called dimensions, and into facts and aggregate facts. The combination of facts and dimensions is sometimes called a star schema. The access layer helps users retrieve data. [5]
A fact is represented by a box that displays the fact name along with the measure names. Small circles represent the dimensions, which are linked to the fact by straight lines (see Figure 1). A dimensional attribute is a property, with a finite domain, of a dimension. Like dimensions, a dimensional attribute is represented by a circle.
The base data and the dimension tables are stored as relational tables and new tables are created to hold the aggregated information. It depends on a specialized schema design. This methodology relies on manipulating the data stored in the relational database to give the appearance of traditional OLAP's slicing and dicing functionality.