enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  3. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing for the incorporation of free nucleotides into double-stranded DNA.

  4. Replication timing - Wikipedia

    en.wikipedia.org/wiki/Replication_timing

    The temporal order of replication of all the segments in the genome, called its replication-timing program, can now be easily measured in two different ways. [1] One way simply measures the amount of the different DNA sequences along the length of the chromosome per cell.

  5. Licensing factor - Wikipedia

    en.wikipedia.org/wiki/Licensing_factor

    A licensing factor is a protein or complex of proteins that allows an origin of replication to begin DNA replication at that site. Licensing factors primarily occur in eukaryotic cells, since bacteria use simpler systems to initiate replication. However, many archaea use homologues of eukaryotic licensing factors to initiate replication. [1]

  6. S phase - Wikipedia

    en.wikipedia.org/wiki/S_phase

    Steps in DNA synthesis. Throughout M phase and G1 phase, cells assemble inactive pre-replication complexes (pre-RC) on replication origins distributed throughout the genome. [4] During S-phase, the cell converts pre-RCs into active replication forks to initiate DNA replication. [4]

  7. Rolling circle replication - Wikipedia

    en.wikipedia.org/wiki/Rolling_circle_replication

    Rolling circle replication (RCR) is a process of unidirectional nucleic acid replication that can rapidly synthesize multiple copies of circular molecules of DNA or RNA, such as plasmids, the genomes of bacteriophages, and the circular RNA genome of viroids. Some eukaryotic viruses also replicate their DNA or RNA via the rolling circle mechanism.

  8. Okazaki fragments - Wikipedia

    en.wikipedia.org/wiki/Okazaki_fragments

    Prokaryotes have circular chromosomes, causing no ends to synthesize. Prokaryotes have a short replication process that occurs continuously; eukaryotic cells, on the other hand, only undertake DNA replication during the S-phase of the cell cycle. The similarities are the steps for the DNA replication.

  9. Prokaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Prokaryotic_DNA_replication

    Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. [1] Although it is often studied in the model organism E. coli, other bacteria show many similarities. [2] Replication is bi-directional and originates at a single origin of replication (OriC). [3]