enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Henry's law - Wikipedia

    en.wikipedia.org/wiki/Henry's_law

    The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry , who studied the topic in the early 19th century. In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution.

  3. Euler's three-body problem - Wikipedia

    en.wikipedia.org/wiki/Euler's_three-body_problem

    The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion.The potential energy is given by =where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively.

  4. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  5. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    Boltzmann's equation = ⁡ is the realization that the entropy is proportional to ⁡ with the constant of proportionality being the Boltzmann constant. Using the ideal gas equation of state ( PV = NkT ), It follows immediately that β = 1 / k T {\displaystyle \beta =1/kT} and α = − μ / k T {\displaystyle \alpha =-\mu /kT} so that the ...

  6. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    Formulas and correlations are available in many references to calculate heat transfer coefficients for typical configurations and fluids. For laminar flows, the heat transfer coefficient is usually smaller than in turbulent flows because turbulent flows have strong mixing within the boundary layer on the heat transfer surface. [ 6 ]

  7. Proportionality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Proportionality_(mathematics)

    Given such a constant k, the proportionality relation ∝ with proportionality constant k between two sets A and B is the equivalence relation defined by {(,): =}. A direct proportionality can also be viewed as a linear equation in two variables with a y-intercept of 0 and a slope of k > 0, which corresponds to linear growth.

  8. Birks' law - Wikipedia

    en.wikipedia.org/wiki/Birks'_Law

    The relation is: = +. where L is the light yield, S is the scintillation efficiency, dE/dx is the specific energy loss of the particle per path length, k is the probability of quenching, [1] and B is a constant of proportionality linking the local density of ionized molecules at a point along the particle's path to the specific energy loss; [1] "Since k and B appear only as a product, they act ...

  9. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.