Search results
Results from the WOW.Com Content Network
In the simple aromatic ring of benzene, the delocalization of six π electrons over the C 6 ring is often graphically indicated by a circle. The fact that the six C-C bonds are equidistant is one indication that the electrons are delocalized; if the structure were to have isolated double bonds alternating with discrete single bonds, the bond would likewise have alternating longer and shorter ...
Benzene, the most widely recognized aromatic compound with six delocalized π-electrons (4n + 2, for n = 1). In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π-electrons, where n is a non-negative integer.
Benzene and cyclohexane have a similar structure, only the ring of delocalized electrons and the loss of one hydrogen per carbon distinguishes it from cyclohexane. The molecule is planar. [ 58 ] The molecular orbital description involves the formation of three delocalized π orbitals spanning all six carbon atoms, while the valence bond ...
Whereas benzene is aromatic (6 electrons, from 3 double bonds), cyclobutadiene is not, since the number of π delocalized electrons is 4, which of course is a multiple of 4. The cyclobutadienide (2−) ion, however, is aromatic (6 electrons).
The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules, such as ethylene, benzene, butadiene, and pyridine. [1] [2] [3] It provides the theoretical basis for Hückel's rule that cyclic, planar molecules or ions with + π-electrons are aromatic.
For example, in benzene, the MO model gives us 6 π MOs which are combinations of the 2p z AOs on each of the 6 C atoms. Thus, each π MO is delocalized over the whole benzene molecule and any electron occupying an MO will be delocalized over the whole molecule. This MO interpretation has inspired the picture of the benzene ring as a hexagon ...
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
However, in benzene the remaining six bonding electrons are located in three π (pi) molecular bonding orbitals that are delocalized around the ring. Two of these electrons are in an MO that has equal orbital contributions from all six atoms. The other four electrons are in orbitals with vertical nodes at right angles to each other.