enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gene orders - Wikipedia

    en.wikipedia.org/wiki/Gene_orders

    Gene order is the permutation of genome arrangement. A fair amount of research has been done trying to determine whether gene orders evolve according to a molecular clock (molecular clock hypothesis) or in jumps (punctuated equilibrium). By comparing gene orders in dissimilar organisms, scientists are able to develop a molecular phylogeny tree. [1]

  3. Coefficient of coincidence - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_coincidence

    In genetics, the coefficient of coincidence (c.o.c.) is a measure of interference in the formation of chromosomal crossovers during meiosis. It is generally the case that, if there is a crossover at one spot on a chromosome, this decreases the likelihood of a crossover in a nearby spot. [1] This is called interference.

  4. DNA sequencing - Wikipedia

    en.wikipedia.org/wiki/DNA_sequencing

    DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and ...

  5. Three-point cross - Wikipedia

    en.wikipedia.org/wiki/Three-point_cross

    By comparing the parental and double-crossover phenotypes, the geneticist can determine which gene is located between the others on the chromosome. The recombinant frequency is the ratio of non-parental phenotypes to total individuals. It is expressed as a percentage, which is equivalent to the number of map units (or centiMorgans) between two ...

  6. Gene mapping - Wikipedia

    en.wikipedia.org/wiki/Gene_mapping

    There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.

  7. Fixation (population genetics) - Wikipedia

    en.wikipedia.org/wiki/Fixation_(population_genetics)

    For example, The Biology Project Genetic Drift Simulation allows to model genetic drift and see how quickly the gene for worm color goes to fixation in terms of generations for different population sizes. Additionally, fixation rates can be modeled using coalescent trees. A coalescent tree traces the descent of alleles of a gene in a population ...

  8. Comparative genomics - Wikipedia

    en.wikipedia.org/wiki/Comparative_genomics

    In order to comprehend its TCRs and their genes, Glusman conducted research on the sequencing of the human and mouse T cell receptor loci. TCR genes are well-known and serve as a significant resource for supporting functional genomics and understanding how genes and intergenic regions of the genome contribute to biological processes.

  9. Rate of evolution - Wikipedia

    en.wikipedia.org/wiki/Rate_of_evolution

    The rate of evolution is quantified as the speed of genetic or morphological change in a lineage over a period of time. The speed at which a molecular entity (such as a protein, gene, etc.) evolves is of considerable interest in evolutionary biology since determining the evolutionary rate is the first step in characterizing its evolution. [1]