enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  3. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    This is a glide reflection, except in the special case that the translation is perpendicular to the line of reflection, in which case the combination is itself just a reflection in a parallel line. The identity isometry, defined by I ( p ) = p for all points p is a special case of a translation, and also a special case of a rotation.

  4. Point groups in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_two_dimensions

    The symmetry group of a square belongs to the family of dihedral groups, D n (abstract group type Dih n), including as many reflections as rotations. The infinite rotational symmetry of the circle implies reflection symmetry as well, but formally the circle group S 1 is distinct from Dih(S 1) because the latter explicitly includes the reflections.

  5. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The product of two rotations or two reflections is a rotation; the product of a rotation and a reflection is a reflection. So far, we have considered D n to be a subgroup of O(2) , i.e. the group of rotations (about the origin) and reflections (across axes through the origin) of the plane.

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...

  7. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    The orthogonal group, consisting of all proper and improper rotations, is generated by reflections. Every proper rotation is the composition of two reflections, a special case of the Cartan–Dieudonné theorem.

  8. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    Glide reflections with translation by the same distance are in the same class. In 3D: Inversions with respect to all points are in the same class. Rotations by the same angle are in the same class. Rotations about an axis combined with translation along that axis are in the same class if the angle is the same and the translation distance is the ...

  9. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Every rotation is the result of reflecting in an even number of reflections in hyperplanes through the origin, and every improper rotation is the result of reflecting in an odd number. Thus reflections generate the orthogonal group , and this result is known as the Cartan–Dieudonné theorem .