Search results
Results from the WOW.Com Content Network
In integral calculus, Glasser's master theorem explains how a certain broad class of substitutions can simplify certain integrals over the whole interval from to +. It is applicable in cases where the integrals must be construed as Cauchy principal values, and a fortiori it is applicable when the integral converges absolutely.
Original file (814 × 1,154 pixels, file size: 48.82 MB, MIME type: application/pdf, 296 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Improper integral; Indicator function; Integral of secant cubed; Integral of the secant function; Integral operator; Integral test for convergence; Integration by parts; Integration by parts operator; Integration by reduction formulae; Integration by substitution; Integration using Euler's formula; Integration using parametric derivatives; Itô ...
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.
Disc integration, also known in integral calculus as the disc method, is a method for calculating the volume of a solid of revolution of a solid-state material when integrating along an axis "parallel" to the axis of revolution. This method models the resulting three-dimensional shape as a stack of an infinite number of discs of varying radius ...
Ganesh Prasad was the Ras Behari Ghosh Chair of Applied Mathematics of Calcutta University (he was the first person to occupy this Chair [3]) from 1914 to 1917 and Hardinge Professor of Mathematics in the same University from 1923 till his death on 9 March 1935.
iv. limits of functions of a positive integral variable; v. limits of functions of a continuous variable. continuous and discontinuous functions; vi. derivatives and integrals; vii. additional theorems in the differential and integral calculus; viii. the convergence of infinite series and infinite integrals; ix.