Search results
Results from the WOW.Com Content Network
Planetary magnetic poles are defined analogously to the Earth's North and South magnetic poles: they are the locations on the planet's surface at which the planet's magnetic field lines are vertical. The direction of the field determines whether the pole is a magnetic north or south pole, exactly as on Earth.
The name "intermediate polar" is derived from the strength of the white dwarf's magnetic field, which is between that of non-magnetic cataclysmic variable systems and strongly magnetic systems. Non-magnetic systems exhibit full accretion disks, while strongly magnetic systems (called polars or AM Herculis systems) exhibit only accretion streams ...
Why is the magnetic reconnection effect many orders of magnitude faster than predicted by standard models? Space weather prediction: How does the Sun produce strong southward-pointing magnetic fields in solar coronal mass ejections that lead to geomagnetic storms? How can we predict solar and geomagnetic super-storms? [8]
[5] [6] CMB exhibits 2 components of polarization: B-mode (divergence-free like magnetic field) and E-mode (curl-free gradient-only like electric field) polarization. The BICEP2 telescope located at the South Pole initially claimed the detection of B-mode polarization in the CMB, though the initially claimed result was later retracted.
A special reticle is used to align the mount with Polaris (or a group of stars near the polar region) in the Southern Hemisphere. While primitive polariscopes originally needed the careful adjustment of the mount to match the time of year and day, this process can be simplified using computer apps that calculate the correct position of the reticle.
Faraday rotation is an important tool in astronomy for the measurement of magnetic fields, which can be estimated from rotation measures given a knowledge of the electron number density. [14] In the case of radio pulsars , the dispersion caused by these electrons results in a time delay between pulses received at different wavelengths, which ...
The spectral lines of mercury vapor lamp at wavelength 546.1 nm, showing anomalous Zeeman effect. (A) Without magnetic field. (B) With magnetic field, spectral lines split as transverse Zeeman effect. (C) With magnetic field, split as longitudinal Zeeman effect. The spectral lines were obtained using a Fabry–Pérot interferometer.
Astrophysical fluid dynamics is a branch of modern astronomy which deals with the motion of fluids in outer space using fluid mechanics, such as those that make up the Sun and other stars. [1] The subject covers the fundamentals of fluid mechanics using various equations , such as continuity equations , the Navier–Stokes equations , and Euler ...