Search results
Results from the WOW.Com Content Network
Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...
The use of hypnosis and suggestion for individuals with neurological disorders should be investigated more thoroughly to discern whether this potential treatment is of a generalized nature. Furthermore, the "experience" of hypnosis has consistently produced more accurate and realistic subjective reports than simply using one's imagination.
Debye forces, or dipole–induced dipole interactions, can also play a role in dispersive adhesion. These come about when a nonpolar molecule becomes temporarily polarized due to interaction with a nearby polar molecule. This "induced dipole" in the nonpolar molecule then is attracted to the permanent dipole, yielding a Debye attraction.
The Axilrod–Teller potential in molecular physics, is a three-body potential that results from a third-order perturbation correction to the attractive London dispersion interactions (instantaneous induced dipole-induced dipole)
The size of the induced dipole moment is equal to the product of the strength of the external field and the dipole polarizability of ρ. Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values given with the unit debye are: [7] carbon dioxide: 0; carbon monoxide: 0.112 D; ozone: 0.53 D
A dipole-induced dipole interaction (Debye force) is due to the approach of a molecule with a permanent dipole to another non-polar molecule with no permanent dipole. This approach causes the electrons of the non-polar molecule to be polarized toward or away from the dipole (or "induce" a dipole) of the approaching molecule. [ 13 ]
Another potential difficulty of the reaction field method is that the dielectric constant must be known a priori. However, it turns out that in most cases dynamical properties are fairly insensitive to the choice of . It can be put in by hand, or calculated approximately using any of a number of well-known relations between the dipole ...
The van der Waals forces [4] are usually described as a combination of the London dispersion forces between "instantaneously induced dipoles", [5] Debye forces between permanent dipoles and induced dipoles, and the Keesom force between permanent molecular dipoles whose rotational orientations are dynamically averaged over time.