enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Puppe sequence - Wikipedia

    en.wikipedia.org/wiki/Puppe_sequence

    It is a simple exercise in topology to see that every three elements of a Puppe sequence are, up to a homotopy, of the form: X → Y → C ( f ) {\displaystyle X\to Y\to C(f)} . By "up to a homotopy", we mean here that every 3 elements in a Puppe sequence are of the above form if regarded as objects and morphisms in the homotopy category .

  3. Lehrbuch der Topologie - Wikipedia

    en.wikipedia.org/wiki/Lehrbuch_der_Topologie

    In mathematics, Lehrbuch der Topologie (German for "textbook of topology") is a book by Herbert Seifert and William Threlfall, first published in 1934 and published in an English translation in 1980. It was one of the earliest textbooks on algebraic topology , and was the standard reference on this topic for many years.

  4. Category of compactly generated weak Hausdorff spaces

    en.wikipedia.org/wiki/Category_of_compactly...

    In mathematics, the category of compactly generated weak Hausdorff spaces, CGWH, is a category used in algebraic topology as an alternative to the category of topological spaces, Top, as the latter lacks some properties that are common in practice and often convenient to use in proofs.

  5. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    In homotopy theory and algebraic topology, the word "space" denotes a topological space.In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated weak Hausdorff or a CW complex.

  6. A¹ homotopy theory - Wikipedia

    en.wikipedia.org/wiki/A¹_homotopy_theory

    In algebraic geometry and algebraic topology, branches of mathematics, A 1 homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky.

  7. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    Allen Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. ISBN 0-521-79540-0. A modern, geometrically flavored introduction to algebraic topology. The book is available free in PDF and PostScript formats on the author's homepage. Kainen, P. C. (1971). "Weak Adjoint Functors". Mathematische Zeitschrift. 122: 1– 9.

  8. Cohomology - Wikipedia

    en.wikipedia.org/wiki/Cohomology

    Singular cohomology is a powerful invariant in topology, associating a graded-commutative ring with any topological space. Every continuous map: determines a homomorphism from the cohomology ring of to that of ; this puts strong restrictions on the possible maps from to .

  9. Cobordism - Wikipedia

    en.wikipedia.org/wiki/Cobordism

    In geometric topology, cobordisms are intimately connected with Morse theory, and h-cobordisms are fundamental in the study of high-dimensional manifolds, namely surgery theory. In algebraic topology, cobordism theories are fundamental extraordinary cohomology theories, and categories of cobordisms are the domains of topological quantum field ...