enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radioisotope thermoelectric generator - Wikipedia

    en.wikipedia.org/wiki/Radioisotope...

    The plutonium-238 used in these RTGs has a half-life of 87.74 years, in contrast to the 24,110 year half-life of plutonium-239 used in nuclear weapons and reactors. A consequence of the shorter half-life is that plutonium-238 is about 275 times more radioactive than plutonium-239 (i.e. 17.3 curies (640 GBq )/ g compared to 0.063 curies (2.3 GBq ...

  3. GPHS-RTG - Wikipedia

    en.wikipedia.org/wiki/GPHS-RTG

    Diagram of an RTG used on the Cassini probe [1] Diagram of a stack of general-purpose heat source modules as used in RTGs Image of a plutonium RTG pellet glowing red hot.. GPHS-RTG or general-purpose heat source — radioisotope thermoelectric generator, is a specific design of the radioisotope thermoelectric generator (RTG) used on US space missions.

  4. Systems for Nuclear Auxiliary Power - Wikipedia

    en.wikipedia.org/wiki/Systems_for_Nuclear...

    The energy source for each device was a rod of plutonium-238 providing a thermal power of approximately 1250 W. [23] This fuel capsule, containing 3.8 kilograms (8.4 lb) of plutonium-238 in oxide form (44,500 Ci or 1.65 PBq), was carried to the Moon in a separate fuel cask attached to the side of the Lunar Module. The fuel cask provided thermal ...

  5. Multi-mission radioisotope thermoelectric generator - Wikipedia

    en.wikipedia.org/wiki/Multi-Mission_Radioisotope...

    Diagram of a MMRTG. The multi-mission radioisotope thermoelectric generator (MMRTG) is a type of radioisotope thermoelectric generator (RTG) developed for NASA space missions [1] such as the Mars Science Laboratory (MSL), under the jurisdiction of the United States Department of Energy's Office of Space and Defense Power Systems within the Office of Nuclear Energy.

  6. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Strontium-90 has been used in radioisotope thermoelectric generators (RTGs) in the past because of its relatively high power density (0.95 W thermal /g for the metal, 0.46 W thermal /g for the commonly used inert perovskite form Strontium titanate) and because it is easily extracted from spent fuel (both native Strontium metal and Strontium ...

  7. General-purpose heat source - Wikipedia

    en.wikipedia.org/wiki/General-purpose_heat_source

    GPHSs of this, or very similar, design were used in the GPHS-RTGs of Cassini-Huygens, New Horizons, the Galileo probe, and the Ulysses probe. They are used in the multi-mission radioisotope thermoelectric generator, as used by Mars Science Laboratory (Curiosity rover). They are also used in the advanced Stirling radioisotope generator.

  8. MHW-RTG - Wikipedia

    en.wikipedia.org/wiki/MHW-RTG

    The Multihundred-watt radioisotope thermoelectric generator (MHW RTG) is a type of US radioisotope thermoelectric generator (RTG) developed for the Voyager spacecraft, Voyager 1 and Voyager 2. [1] The Voyager generators continue to function more than 45 years into the mission.

  9. Plutonium-238 - Wikipedia

    en.wikipedia.org/wiki/Plutonium-238

    Plutonium-238 (238 Pu or Pu-238) is a radioactive isotope of plutonium that has a half-life of 87.7 years.. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suitable for usage in radioisotope thermoelectric generators (RTGs) and radioisotope heater units.