Search results
Results from the WOW.Com Content Network
In quantum mechanics, the measurement problem is the problem of definite outcomes: quantum systems have superpositions but quantum measurements only give one definite result. [ 1 ] [ 2 ] The wave function in quantum mechanics evolves deterministically according to the Schrödinger equation as a linear superposition of different states.
The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position.
As noted above, Gleason's theorem shows that there is no probability measure over the rays of a Hilbert space that only takes the values 0 and 1 (as long as the dimension of that space exceeds 2). The Kochen–Specker theorem refines this statement by constructing a specific finite subset of rays on which no such probability measure can be defined.
In quantum mechanics, each physical system is associated with a Hilbert space, each element of which represents a possible state of the physical system.The approach codified by John von Neumann represents a measurement upon a physical system by a self-adjoint operator on that Hilbert space termed an "observable".
Von Neumann introduced the density matrix in order to develop both quantum statistical mechanics and a theory of quantum measurements. The name density matrix itself relates to its classical correspondence to a phase-space probability measure (probability distribution of position and momentum) in classical statistical mechanics , which was ...
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which ...
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density . Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link was first ...
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum ...