enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Permeability (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Permeability...

    For passive magnetic levitation a relative permeability below 1 is needed (corresponding to a negative susceptibility). Permeability varies with a magnetic field. Values shown above are approximate and valid only at the magnetic fields shown. They are given for a zero frequency; in practice, the permeability is generally a function of the ...

  3. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    for virtually any well-behaved function g of dimensionless argument φ, where ω is the angular frequency (in radians per second), and k = (k x, k y, k z) is the wave vector (in radians per meter). Although the function g can be and often is a monochromatic sine wave , it does not have to be sinusoidal, or even periodic.

  4. Wave impedance - Wikipedia

    en.wikipedia.org/wiki/Wave_impedance

    where μ is the magnetic permeability, ε is the (real) electric permittivity and σ is the electrical conductivity of the material the wave is travelling through (corresponding to the imaginary component of the permittivity multiplied by omega). In the equation, j is the imaginary unit, and ω is the angular frequency of the wave.

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    For materials without polarization and magnetization, the constitutive relations are (by definition) [9]: 2 =, =, where ε 0 is the permittivity of free space and μ 0 the permeability of free space. Since there is no bound charge, the total and the free charge and current are equal.

  7. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    Its reduction with increasing frequency, as the ratio of skin depth to the wire's radius falls below about 1, is plotted in the accompanying graph, and accounts for the reduction in the telephone cable inductance with increasing frequency in the table below. The internal component of a round wire's inductance vs. the ratio of skin depth to radius.

  8. Impedance of free space - Wikipedia

    en.wikipedia.org/wiki/Impedance_of_free_space

    μ 0 ≈ 12.566 × 10 −7 H/m is the magnetic constant, also known as the permeability of free space, ε 0 ≈ 8.854 × 10 −12 F/m is the electric constant, also known as the permittivity of free space, c is the speed of light in free space, [9] [10] The reciprocal of Z 0 is sometimes referred to as the admittance of free space and ...

  9. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    The penetration depth for a good conductor can be calculated from the following equation: [5] =, where δ is the penetration depth (m), f is the frequency (Hz), μ is the magnetic permeability of the material (H/m), and σ is the electrical conductivity of the material (S/m).