enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.

  3. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...

  4. Countercurrent exchange - Wikipedia

    en.wikipedia.org/wiki/Countercurrent_exchange

    A comparison between the operations and effects of a cocurrent and a countercurrent flow exchange system is depicted by the upper and lower diagrams respectively. In both it is assumed (and indicated) that red has a higher value (e.g. of temperature) than blue and that the property being transported in the channels therefore flows from red to blue.

  5. Heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Heat_exchanger

    The driving temperature across the heat transfer surface varies with position, but an appropriate mean temperature can be defined. In most simple systems this is the "log mean temperature difference" (LMTD). Sometimes direct knowledge of the LMTD is not available and the NTU method is used.

  6. Shell-and-tube heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Shell-and-tube_heat_exchanger

    Two fluids, of different starting temperatures, flow through the heat exchanger. One flows through all the tubes in parallel and the other flows outside the tubes, but inside the shell, typically in counterflow. Heat is transferred from one fluid to the other through the tube walls, either from tube side to shell side or vice versa.

  7. Concentric tube heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Concentric_tube_heat_exchanger

    Concentric Tube (or Pipe) Heat Exchangers are used in a variety of industries for purposes such as material processing, food preparation, and air-conditioning. [1] They create a temperature driving force by passing fluid streams of different temperatures parallel to each other, separated by a physical boundary in the form of a pipe.

  8. James M. Loy - Pay Pals - The Huffington Post

    data.huffingtonpost.com/paypals/james-m-loy

    From January 2008 to December 2012, if you bought shares in companies when James M. Loy joined the board, and sold them when he left, you would have a -12.7 percent return on your investment, compared to a -2.8 percent return from the S&P 500.

  9. Plate heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Plate_heat_exchanger

    The total rate of heat transfer between the hot and cold fluids passing through a plate heat exchanger may be expressed as: Q = UA∆Tm where U is the Overall heat transfer coefficient, A is the total plate area, and ∆Tm is the Log mean temperature difference. U is dependent upon the heat transfer coefficients in the hot and cold streams. [2]