Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [ 3 ] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis .
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
Any Taylor series for this function converges not only for x close enough to x 0 (as in the definition) but for all values of x (real or complex). The trigonometric functions, logarithm, and the power functions are analytic on any open set of their domain. Most special functions (at least in some range of the complex plane): hypergeometric ...
In probability theory, the first-order second-moment (FOSM) method, also referenced as mean value first-order second-moment (MVFOSM) method, is a probabilistic method to determine the stochastic moments of a function with random input variables
The Taylor expansion would be: + where / denotes the partial derivative of f k with respect to the i-th variable, evaluated at the mean value of all components of vector x. Or in matrix notation , f ≈ f 0 + J x {\displaystyle \mathrm {f} \approx \mathrm {f} ^{0}+\mathrm {J} \mathrm {x} \,} where J is the Jacobian matrix .
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]
A nice way to double-check that these relations are correct is to do a Taylor expansion of the translation operator acting on a position-space wavefunction. Expanding the exponential to all orders, the translation operator generates exactly the full Taylor expansion of a test function: ψ ( r − x ) = T ^ ( x ) ψ ( r ) = exp ( − i x ⋅ ...