Search results
Results from the WOW.Com Content Network
The abstraction of cardinality as a number is evident by 3000 BCE, in Sumerian mathematics and the manipulation of numbers without reference to a specific group of things or events. [ 6 ] From the 6th century BCE, the writings of Greek philosophers show hints of the cardinality of infinite sets.
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.
The oldest definition of the cardinality of a set X (implicit in Cantor and explicit in Frege and Principia Mathematica) is as the set of all sets that are equinumerous with X: this does not work in ZFC or other related systems of axiomatic set theory because this collection is too large to be a set, but it does work in type theory and in New ...
The cardinality of any infinite ordinal number is an aleph number. Every aleph is the cardinality of some ordinal. The least of these is its initial ordinal. Any set whose cardinality is an aleph is equinumerous with an ordinal and is thus well-orderable. Each finite set is well-orderable, but does not have an aleph as its cardinality.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.
The category < of sets of cardinality less than and all functions between them is closed under colimits of cardinality less than . κ {\displaystyle \kappa } is a regular ordinal (see below) Crudely speaking, this means that a regular cardinal is one that cannot be broken down into a small number of smaller parts.
Cardinal functions are widely used in topology as a tool for describing various topological properties. [2] [3] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the ...