enow.com Web Search

  1. Ads

    related to: aerodynamic efficiency of a wing car wash equipment

Search results

  1. Results from the WOW.Com Content Network
  2. Washout (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Washout_(aeronautics)

    (This can be described as aerodynamic wash-in.) Winglets also promote a greater bending moment at the wing root, possibly necessitating a heavier wing structure. Installation of winglets may necessitate greater aerodynamic washout in order to provide the required resistance to spinning, or to optimise the spanwise lift distribution.

  3. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

  4. Glossary of aerospace engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_aerospace...

    Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [23] Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving fuel economy in aircraft.

  5. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]

  6. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    For a given wing area, a high aspect ratio wing will produce less induced drag than a wing of low aspect ratio. [16] While induced drag is inversely proportional to the square of the wingspan, not necessarily inversely proportional to aspect ratio, if the wing area is held constant, then induced drag will be inversely proportional to aspect ...

  7. Closed wing - Wikipedia

    en.wikipedia.org/wiki/Closed_wing

    Nonplanar wings: results for the optimal aerodynamic efficiency ratio ε. The parameter ε is the optimal aerodynamic efficiency ratio [25] and represents the ratio between the aerodynamic efficiency of a given non-planar wing and the corresponding efficiency of a reference classical cantilevered wing with the same wing span and total lift ...

  8. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    It is a better measure of the aerodynamic efficiency of an aircraft than the wing aspect ratio. It is defined as: = where is span and is the wetted surface. Illustrative examples are provided by the Boeing B-47 and Avro Vulcan. Both aircraft have very similar performance although they are radically different.

  9. Automotive aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Automotive_aerodynamics

    Automotive aerodynamics differs from aircraft aerodynamics in several ways: The characteristic shape of a road vehicle is much less streamlined compared to an aircraft. The vehicle operates very close to the ground, rather than in free air. The operating speeds are lower (and aerodynamic drag varies as the square of speed).

  1. Ads

    related to: aerodynamic efficiency of a wing car wash equipment