Search results
Results from the WOW.Com Content Network
Note that the conditional expected value is a random variable in its own right, whose value depends on the value of . Notice that the conditional expected value of given the event = is a function of (this is where adherence to the conventional and rigidly case-sensitive notation of probability theory becomes important!).
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure
Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
The expected value can be thought of as a reasonable prediction of the outcomes of the random experiment (in particular, the expected value is the best constant prediction when predictions are assessed by expected squared prediction error). Thus, one interpretation of variance is that it gives the smallest possible expected squared prediction ...
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.
This process can be linked to an idealisation of repeatedly flipping a coin, where the probability of obtaining a head is taken to be and its value is one, while the value of a tail is zero. [81] In other words, a Bernoulli process is a sequence of iid Bernoulli random variables, [ 82 ] where each idealised coin flip is an example of a ...