enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    † can for example be seen to add one particle, because it will add 1 to the eigenvalue of the a-particle number operator, and the momentum of that particle ought to be p since the eigenvalue of the vector-valued momentum operator increases by that much. For these derivations, one starts out with expressions for the operators in terms of the ...

  3. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The time evolution of the state is given by a differentiable function from the real numbers R, representing instants of time, to the Hilbert space of system states. This map is characterized by a differential equation as follows: If |ψ(t) denotes the state of the system at any one time t, the following Schrödinger equation holds:

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Defining equation SI unit Dimension Wavefunction: ψ, Ψ To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ρ = | | = m −3 [L] −3: Wavefunction probability current: j: Non-relativistic, no external field:

  5. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Klein–Gordon equation, + =, was the first such equation to be obtained, even before the nonrelativistic one-particle Schrödinger equation, and applies to massive spinless particles. Historically, Dirac obtained the Dirac equation by seeking a differential equation that would be first-order in both time and space, a desirable property for ...

  6. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    This equation is the Schrödinger equation. It takes the same form as the Hamilton–Jacobi equation , which is one of the reasons H {\displaystyle H} is also called the Hamiltonian. Given the state at some initial time ( t = 0 {\displaystyle t=0} ), we can solve it to obtain the state at any subsequent time.

  7. Dirac equation - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation

    In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry.

  8. Gell-Mann–Nishijima formula - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann–Nishijima_formula

    The Gell-Mann–Nishijima formula (sometimes known as the NNG formula) relates the baryon number B, the strangeness S, the isospin I 3 of quarks and hadrons to the electric charge Q. It was originally given by Kazuhiko Nishijima and Tadao Nakano in 1953, [ 1 ] and led to the proposal of strangeness as a concept, which Nishijima originally ...

  9. Path integral formulation - Wikipedia

    en.wikipedia.org/wiki/Path_integral_formulation

    The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.