Search results
Results from the WOW.Com Content Network
† can for example be seen to add one particle, because it will add 1 to the eigenvalue of the a-particle number operator, and the momentum of that particle ought to be p since the eigenvalue of the vector-valued momentum operator increases by that much. For these derivations, one starts out with expressions for the operators in terms of the ...
The time evolution of the state is given by a differentiable function from the real numbers R, representing instants of time, to the Hilbert space of system states. This map is characterized by a differential equation as follows: If |ψ(t) denotes the state of the system at any one time t, the following Schrödinger equation holds:
Defining equation SI unit Dimension Wavefunction: ψ, Ψ To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ρ = | | = m −3 [L] −3: Wavefunction probability current: j: Non-relativistic, no external field:
The Klein–Gordon equation, + =, was the first such equation to be obtained, even before the nonrelativistic one-particle Schrödinger equation, and applies to massive spinless particles. Historically, Dirac obtained the Dirac equation by seeking a differential equation that would be first-order in both time and space, a desirable property for ...
This equation is the Schrödinger equation. It takes the same form as the Hamilton–Jacobi equation , which is one of the reasons H {\displaystyle H} is also called the Hamiltonian. Given the state at some initial time ( t = 0 {\displaystyle t=0} ), we can solve it to obtain the state at any subsequent time.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry.
The Gell-Mann–Nishijima formula (sometimes known as the NNG formula) relates the baryon number B, the strangeness S, the isospin I 3 of quarks and hadrons to the electric charge Q. It was originally given by Kazuhiko Nishijima and Tadao Nakano in 1953, [ 1 ] and led to the proposal of strangeness as a concept, which Nishijima originally ...
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.