Search results
Results from the WOW.Com Content Network
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
Download as PDF; Printable version; ... The electromagnetic induction is the operating principle behind many electric generators: ... (Faraday's law of induction)
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
Induction of a Current on Itself. General Equations of Dynamics. Application of Dynamics to Electromagnetism. Electrokinetics. Exploration of the Field by means of the Secondary Circuit. General Equations. Dimensions of Electric Units. Energy and Stress. Current-Sheets. Parallel Currents. Circular Currents. Electromagnetic Instruments.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
Aluminium ring moved by electromagnetic induction, thus demonstrating Lenz's law. Experiment showing Lenz's law with two aluminium rings on a scales-like device set up on a pivot so as to freely move in the horizontal plane. One ring is fully enclosed, while the other has an opening, not forming a complete circle.
In fact, noted Blondel, "Significant discussions have been raised repeatedly on the question of what is the most general law of induction: we should consider the electromotive force (e.m.f.) as the product of any variation of magnetic flux surrounding a conductor or of the fact that the conductor sweeps part of this flux?".