enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  3. File:Reinforcement learning diagram.svg - Wikipedia

    en.wikipedia.org/wiki/File:Reinforcement...

    English: Diagram showing the components in a typical Reinforcement Learning (RL) system. An agent takes actions in an environment which is interpreted into a reward and a representation of the state which is fed back into the agent.

  4. Rescorla–Wagner model - Wikipedia

    en.wikipedia.org/wiki/Rescorla–Wagner_model

    Van Hamme and Wasserman have extended the original Rescorla–Wagner (RW) model and introduced a new factor in their revised RW model in 1994: [3] They suggested that not only conditioned stimuli physically present on a given trial can undergo changes in their associative strength, the associative value of a CS can also be altered by a within-compound-association with a CS present on that trial.

  5. Action model learning - Wikipedia

    en.wikipedia.org/wiki/Action_model_learning

    Given a training set consisting of examples = (,, ′), where , ′ are observations of a world state from two consecutive time steps , ′ and is an action instance observed in time step , the goal of action model learning in general is to construct an action model , , where is a description of domain dynamics in action description formalism like STRIPS, ADL or PDDL and is a probability ...

  6. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .

  7. State–action–reward–state–action - Wikipedia

    en.wikipedia.org/wiki/State–action–reward...

    State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning.It was proposed by Rummery and Niranjan in a technical note [1] with the name "Modified Connectionist Q-Learning" (MCQ-L).

  8. Multi-agent reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Multi-agent_reinforcement...

    Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. [ 1 ] Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the ...

  9. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    Neuroevolution is commonly used as part of the reinforcement learning paradigm, and it can be contrasted with conventional deep learning techniques that use backpropagation (gradient descent on a neural network) with a fixed topology.