Search results
Results from the WOW.Com Content Network
A crossed rectangle may be considered equiangular if right and left turns are allowed. As with any crossed quadrilateral, the sum of its interior angles is 720°, allowing for internal angles to appear on the outside and exceed 180°. [16] A rectangle and a crossed rectangle are quadrilaterals with the following properties in common:
The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two ...
That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a ...
Corollary: every maximal square/rectangle in P has at least two points, on two opposite edges, that intersect the boundary of P. A corner square is a maximal square s in a polygon P such that at least one corner of s overlaps a convex corner of P. For every convex corner, there is exactly one maximal (corner) square covering it, but a single ...
A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles). Oblong: longer than wide, or wider than long (i.e., a rectangle that is not a square). [5] Kite: two pairs of adjacent sides are of equal length.
A rhombus has an inscribed circle, while a rectangle has a circumcircle. A rhombus has an axis of symmetry through each pair of opposite vertex angles, while a rectangle has an axis of symmetry through each pair of opposite sides. The diagonals of a rhombus intersect at equal angles, while the diagonals of a rectangle are equal in length.
The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...
A rectangle with edges in a ratio of √2 : 1 can be created from a square piece of paper with a basic origami folding sequence. Considered a proportion of great harmony in Japanese aesthetics — Yamato-hi (大和比) — the ratio is retained if the √2 rectangle is folded in half, parallel to the short edges.