Search results
Results from the WOW.Com Content Network
The crystal lattice parameters a, b, and c have the dimension of length. The three numbers represent the size of the unit cell , that is, the distance from a given atom to an identical atom in the same position and orientation in a neighboring cell (except for very simple crystal structures, this will not necessarily be distance to the nearest ...
Lattice proteins are highly simplified models of protein-like heteropolymer chains on lattice conformational space which are used to investigate protein folding. [1] Simplification in lattice proteins is twofold: each whole residue ( amino acid ) is modeled as a single "bead" or "point" of a finite set of types (usually only two), and each ...
Lattice models in biophysics represent a class of statistical-mechanical models which consider a biological macromacromolecule (such as DNA, protein, actin, ...
A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as 1 / n of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain 1 / 8 of each of them. [3]
The geometry of the unit cell is defined as a parallelepiped, providing six lattice parameters taken as the lengths of the cell edges (a, b, c) and the angles between them (α, β, γ). The positions of particles inside the unit cell are described by the fractional coordinates ( x i , y i , z i ) along the cell edges, measured from a reference ...
A lattice in which the conventional basis is primitive is called a primitive lattice, while a lattice with a non-primitive conventional basis is called a centered lattice. The choice of an origin and a basis implies the choice of a unit cell which can further be used to describe a crystal pattern.
Meeks found an explicit 5-parameter family for genus 3 TPMS that contained all then known examples of genus 3 surfaces except the gyroid. [6] Members of this family can be continuously deformed into each other, remaining embedded in the process (although the lattice may change). The gyroid and lidinoid are each inside a separate 1-parameter ...
Similar to the ideal hcp structure, the perfect dhcp structure should have a lattice parameter ratio of = In the real dhcp structures of 5 lanthanides (including β-Ce) / variates between 1.596 (Pm) and 1.6128 (Nd). For the four known actinides dhcp lattices the corresponding number vary between 1.620 (Bk) and 1.625 (Cf).