Search results
Results from the WOW.Com Content Network
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
Static friction is friction between two or more solid objects that are not moving relative to each other. For example, static friction can prevent an object from sliding down a sloped surface. The coefficient of static friction, typically denoted as μ s, is usually higher than the coefficient of kinetic friction. Static friction is considered ...
Friction loss (or head loss) represents energy lost to friction as fluid flows through the pipe. This equation can be derived from Bernoulli's Equation . For incompressible liquids such as water, Static lift + Pressure head together equal the difference in fluid surface elevation between the suction basin and the discharge basin.
Hersey's original formula uses the rotational speed (revolutions per unit time) for N and the load per projected area (i.e. the product of a journal bearing's length and diameter) for P. Alternatively, the Hersey number is the dimensionless number obtained from the velocity (m/s) times the dynamic viscosity (Pa∙s = N∙s/m2), divided by the ...
Dry_friction-1.pdf (370 × 258 pixels, file size: 32 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Stiction (a portmanteau of the words static and friction) [1] is the force that needs to be overcome to enable relative motion of stationary objects in contact. [2] Any solid objects pressing against each other (but not sliding) will require some threshold of force parallel to the surface of contact in order to overcome static adhesion. [3]
It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact. With respect to road-tire interaction, an important contribution concerns the so-called magic tire formula by Hans Pacejka. [7] In the 1970s, many numerical models were devised.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]