Search results
Results from the WOW.Com Content Network
The additional fraction of / present in these tail bounds lead to better confidence intervals than Chebyshev's inequality. For example, for any symmetrical unimodal distribution, the Vysochanskij–Petunin inequality states that 4/(9 x 3^2) = 4/81 ≈ 4.9% of the distribution lies outside 3 standard deviations of the mode.
In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.
Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate, that for every n there is a prime between n and 2n. Chebyshev's inequality, on the range of standard deviations around the mean, in statistics; Chebyshev's sum inequality, about sums and products of decreasing sequences
Jensen's inequality; General moments about the mean; Correlated and uncorrelated random variables; Conditional expectation: law of total expectation, law of total variance; Fatou's lemma and the monotone and dominated convergence theorems; Markov's inequality and Chebyshev's inequality
In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, states that if ...
In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. [15] As an example, assume that each random variable in the series follows a Gaussian distribution (normal distribution) with mean zero, but with variance equal to 2 n / log ( n + 1 ) {\displaystyle 2n/\log(n+1 ...
Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–Erdős inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality; Dvoretzky–Kiefer–Wolfowitz inequality; Eaton's inequality, a bound on the largest absolute value of a linear combination of bounded random variables; Emery's ...
In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. [1]