enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327. But since the normal distribution curve is symmetrical, probabilities for only positive values of Z are typically given.

  3. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  4. Z-value (temperature) - Wikipedia

    en.wikipedia.org/wiki/Z-value_(temperature)

    The z-value allows calculation of the equivalency of two thermal processes, if the D-value and the z-value are known. Example: if it takes an increase of 10 °C (18 °F) to move the curve one log, then our z-value is 10. Given a D-value of 4.5 minutes at 150 °C, the D-value can be calculated for 160 °C by reducing the time by 1 log. The new D ...

  5. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    Looking up the z-score in a table of the standard normal distribution cumulative probability, we find that the probability of observing a standard normal value below −2.47 is approximately 0.5 − 0.4932 = 0.0068.

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  7. Normal score - Wikipedia

    en.wikipedia.org/wiki/Normal_score

    Particularly in applications where the name "normal score" is used, there is usually a presumption that the value can be referred to a table of standard normal probabilities as a means of providing a significance test of some hypothesis, such as a difference in means. [citation needed]

  8. 97.5th percentile point - Wikipedia

    en.wikipedia.org/wiki/97.5th_percentile_point

    "The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered significant or not." [11] In Table 1 of the same work, he gave the more precise value 1.959964. [12] In 1970, the value truncated to 20 decimal places was calculated to be

  9. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    This expression is valid only for positive values of x, but it can be used in conjunction with Q(x) = 1 − Q(−x) to obtain Q(x) for negative values. This form is advantageous in that the range of integration is fixed and finite.