Search results
Results from the WOW.Com Content Network
Roberts (p. 171) gives a related example in Java, using a Class to represent a stack frame. The example given is a solution to the Tower of Hanoi problem wherein a stack simulates polymorphic recursion with a beginning, temporary and ending nested stack substitution structure.
Ad hoc polymorphism is a dispatch mechanism: control moving through one named function is dispatched to various other functions without having to specify the exact function being called. Overloading allows multiple functions taking different types to be defined with the same name; the compiler or interpreter automatically ensures that the right ...
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
The following example demonstrates how to describe types that can be compared to each other and use this as typing information in polymorphic functions. The Test.min function uses simple bounded quantification and does not ensure the objects are mutually comparable, in contrast with the Test.fMin function which uses F-bounded quantification.
The data from these papers is summarized in the following table, where the dispatch ratio DR is the average number of methods per generic function; the choice ratio CR is the mean of the square of the number of methods (to better measure the frequency of functions with a large number of methods); [2] [3] and the degree of specialization DoS is ...
In computer programming, operator overloading, sometimes termed operator ad hoc polymorphism, is a specific case of polymorphism, where different operators have different implementations depending on their arguments. Operator overloading is generally defined by a programming language, a programmer, or both.
For example, in the GHC standard library, the class IArray expresses a general immutable array interface. In this class, the type class constraint IArray a e means that a is an array type that contains elements of type e. (This restriction on polymorphism is used to implement unboxed array types, for example.)
System F <: has been of central importance to programming language theory since the 1980s [citation needed] because the core of functional programming languages, like those in the ML family, support both parametric polymorphism and record subtyping, which can be expressed in System F <:. [10] [11]