enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In such a presentation, the notions of length and angle are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions ...

  3. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces.

  5. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    This angle may be calculated from the dot product of the two vectors, defined as a ⋅ b = ‖ a ‖ ‖ b ‖ cos θ where ‖ a ‖ denotes the length of vector a. As shown in the diagram, the dot product here is –1 and the length of each vector is √ 3, so that cos θ = – ⁠ 1 / 3 ⁠ and the tetrahedral bond angle θ = arccos ...

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    If the dot product of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself).

  7. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    Dot product, angle, and length. The dot product of two vectors A = [A 1, A 2] and B = [B 1, B 2] is defined as: [5] = + A vector can be pictured as an arrow. ...

  8. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    Using the modern terms cross product (×) and dot product (.), the quaternion product of two vectors p and q can be written pq = –p.q + p×q. In 1878, W. K. Clifford severed the two products to make the quaternion operation useful for students in his textbook Elements of Dynamic.

  9. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the magnitudes of the vectors, but only on their angle. The cosine similarity always belongs to the interval [,].