Search results
Results from the WOW.Com Content Network
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
This formula, apart from the first vacuum energy term, is a special case of the general formula for particles obeying Bose–Einstein statistics. Since there is no restriction on the total number of photons, the chemical potential is zero.
The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.
The Compton wavelength for this particle is the wavelength of a photon of the same energy. For photons of frequency f , energy is given by E = h f = h c λ = m c 2 , {\displaystyle E=hf={\frac {hc}{\lambda }}=mc^{2},} which yields the Compton wavelength formula if solved for λ .
By applying the differentials to the energy equation and identifying the relativistic momentum: = then integrating, de Broglie arrived as his formula for the relationship between the wavelength , λ , associated with an electron and the modulus of its momentum , p , through the Planck constant , h : [ 14 ] λ = h p . {\displaystyle \lambda ...
The energy of an individual photon is quantized and proportional to frequency according to Planck's equation E = hf, where E is the energy per photon, f is the frequency of the photon, and h is the Planck constant. Thus, higher frequency photons have more energy.
The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a transition from a high energy state to a lower energy state. The photon energy of the emitted photons is equal to the energy difference between the two states. There are many possible ...