enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.

  3. WAVL tree - Wikipedia

    en.wikipedia.org/wiki/WAVL_tree

    The height of an external node is zero, and the height of any internal node is always one plus the maximum of the heights of its two children. Thus, the height function of an AVL tree obeys the constraints of a WAVL tree, and we may convert any AVL tree into a WAVL tree by using the height of each node as its rank. [1] [2]

  4. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    An internal node (also known as an inner node, inode for short, or branch node) is any node of a tree that has child nodes. Similarly, an external node (also known as an outer node, leaf node, or terminal node) is any node that does not have child nodes. The height of a node is the length of the longest downward path to a leaf from that node ...

  5. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  6. Left-leaning red–black tree - Wikipedia

    en.wikipedia.org/wiki/Left-leaning_red–black_tree

    A left-leaning red-black tree satisfies all the properties of a red-black tree: Every node is either red or black. A NIL node is considered black. A red node does not have a red child. Every path from a given node to any of its descendant NIL nodes goes through the same number of black nodes. The root is black (by convention).

  7. Red–black tree - Wikipedia

    en.wikipedia.org/wiki/Red–black_tree

    The black height of a red–black tree is the number of black nodes in any path from the root to the leaves, which, by requirement 4, is constant (alternatively, it could be defined as the black depth of any leaf node). [16]: 154–165 The black height of a node is the black height of the subtree rooted by it. In this article, the black height ...

  8. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A tree consisting of only a root node has a height of 0. The least number of nodes is obtained by adding only two children nodes per adding height so + (1 for counting the root node). The maximum number of nodes is obtained by fully filling nodes at each level, i.e., it is a perfect tree.

  9. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    A rooted tree T that is a subgraph of some graph G is a normal tree if the ends of every T-path in G are comparable in this tree-order (Diestel 2005, p. 15). Rooted trees, often with an additional structure such as an ordering of the neighbors at each vertex, are a key data structure in computer science; see tree data structure .