Search results
Results from the WOW.Com Content Network
This recursive ray tracing of reflective colored spheres on a white surface demonstrates the effects of shallow depth of field, "area" light sources, and diffuse interreflection. (c. 2008) In 3D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images.
Ray tracing of a beam of light passing through a medium with changing refractive index.The ray is advanced by a small amount, and then the direction is re-calculated. Ray tracing works by assuming that the particle or wave can be modeled as a large number of very narrow beams (), and that there exists some distance, possibly very small, over which such a ray is locally straight.
Ray tracing is a method for calculating the path of waves or particles through a system. The method is practiced in two distinct forms: The method is practiced in two distinct forms: Ray tracing (physics) , which is used for analyzing optical and other systems
The graphics card maker is readying itself to take on a $250 billion industry.
The ray tracing algorithm is inherently suitable for scaling by parallelization of individual ray renders. [3] However, anything other than ray casting requires recursion of the ray tracing algorithm (and random access to the scene graph ) to complete their analysis, [ 4 ] since reflected, refracted, and scattered rays require that various ...
When discussing ray tracing this definition is often reversed: a "paraxial ray" is then a ray that is modeled using the paraxial approximation, not necessarily a ray that remains close to the axis. [11] [12] A finite ray or real ray is a ray that is traced without making the paraxial approximation. [12] [13]
Distributed ray tracing, also called distribution ray tracing and stochastic ray tracing, is a refinement of ray tracing that allows for the rendering of "soft" phenomena. Conventional ray tracing uses single rays to sample many different domains.
The ray-tracing performed by the RT cores can be used to produce reflections, refractions and shadows, replacing traditional raster techniques such as cube maps and depth maps. Instead of replacing rasterization entirely, however, the information gathered from ray-tracing can be used to augment the shading with information that is much more ...