Search results
Results from the WOW.Com Content Network
Saltatory conduction. In neuroscience, nerve conduction velocity (CV) is the speed at which an electrochemical impulse propagates down a neural pathway.Conduction velocities are affected by a wide array of factors, which include age, sex, and various medical conditions.
The conduction velocity is measured in meters per second. It is obtained by dividing the distance between the stimulation site and the recording site by the latency: Conduction velocity = Distance/Latency. Sensory NCS: An example screenshot showing the results of a sensory nerve conduction velocity study of the right median nerve.
Electromyoneurography (EMNG) is the combined use of electromyography and electroneurography [1] This technique allows for the measurement of a peripheral nerve's conduction velocity upon stimulation (electroneurography) alongside electrical recording of muscular activity (electromyography). Their combined use proves to be clinically relevant by ...
Propagation of action potential along myelinated nerve fiber. In neuroscience, saltatory conduction (from Latin saltus 'leap, jump') is the propagation of action potentials along myelinated axons from one node of Ranvier to the next, increasing the conduction velocity of action potentials.
This conduction velocity ranges from 1 m/s to over 100 m/s, and generally increases with the diameter of the neuronal process. Slow in the timescales of biologically-relevant events dictated by the speed of sound or the force of gravity, the nervous system overwhelmingly prefers parallel computations over serial ones in time-critical applications.
The size and the spacing of the internodes vary with the fiber diameter in a curvilinear relationship that is optimized for maximal conduction velocity. [5] The size of the nodes span from 1–2 μm whereas the internodes can be up to (and occasionally even greater than)1.5 millimetres long, depending on the axon diameter and fiber type.
F-waves are the second of two late voltage changes observed after stimulation is applied to the skin surface above the distal region of a nerve, in addition to the H-reflex (Hoffman's Reflex) which is a muscle reaction in response to electrical stimulation of innervating sensory fibers.
The conduction velocity v of myelinated neurons varies roughly linearly with axon diameter d (that is, v ∝ d), [p] whereas the speed of unmyelinated neurons varies roughly as the square root (v ∝ √ d). [u] The red and blue curves are fits of experimental data, whereas the dotted lines are their theoretical extrapolations.