enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases. Fibonacci numbers are also closely related to Lucas numbers, which obey the same ...

  3. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.

  4. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    Exceptionally, the golden ratio is equal to the limit of the ratios of successive terms in the Fibonacci sequence and sequence of Lucas numbers: [42] + = + =. In other words, if a Fibonacci and Lucas number is divided by its immediate predecessor in the sequence, the quotient approximates ⁠ φ {\displaystyle \varphi } ⁠ .

  5. Fibonacci numbers in popular culture - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_numbers_in...

    The Fibonacci sequence is frequently referenced in the 2001 book The Perfect Spiral by Jason S. Hornsby. A youthful Fibonacci is one of the main characters in the novel Crusade in Jeans (1973). He was left out of the 2006 movie version, however. The Fibonacci sequence and golden ratio are briefly described in John Fowles's 1985 novel A Maggot.

  6. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio .

  7. Random Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Random_Fibonacci_sequence

    A random Fibonacci sequence is an integer random sequence given by the numbers for natural numbers, where = = and the subsequent terms are chosen randomly according to the random recurrence relation = {+,;,. An instance of the random Fibonacci sequence starts with 1,1 and the value of the each subsequent term is determined by a fair coin toss: given two consecutive elements of the sequence ...

  8. Fibonorial - Wikipedia

    en.wikipedia.org/wiki/Fibonorial

    Here the fibonorial constant (also called the fibonacci factorial constant [1]) is defined by = = (), where = and is the golden ratio. An approximate truncated value of C {\displaystyle C} is 1.226742010720 (see (sequence A062073 in the OEIS ) for more digits).

  9. Reciprocal Fibonacci constant - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_Fibonacci_constant

    The reciprocal Fibonacci constant ψ is the sum of the reciprocals of the Fibonacci numbers: = = = + + + + + + + +. Because the ratio of successive terms tends to the reciprocal of the golden ratio, which is less than 1, the ratio test shows that the sum converges.