Search results
Results from the WOW.Com Content Network
It reacts with a reducing sugar to form 3-amino-5-nitrosalicylic acid, which can be measured by spectrophotometry to determine the amount of reducing sugar that was present. [8] Some sugars, such as sucrose, do not react with any of the reducing-sugar test solutions. However, a non-reducing sugar can be hydrolyzed using dilute hydrochloric acid ...
Sucrose (table sugar) contains two sugars (fructose and glucose) joined by their glycosidic bond in such a way as to prevent the glucose undergoing isomerization to an aldehyde, or fructose to alpha-hydroxy-ketone form. Sucrose is thus a non-reducing sugar which does not react with Benedict's reagent.
Sucrose and trehalose are examples of non-reducing disaccharides because their glycosidic bond is between their respective hemiacetal carbon atoms. The reduced chemical reactivity of the non-reducing sugars, in comparison to reducing sugars, may be an advantage where stability in storage is important. [5] [6]
Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. [4] It is a methyl ester of the aspartic acid/phenylalanine dipeptide with brand names NutraSweet, Equal, and Canderel. [4]
In organic chemistry, Fehling's solution is a chemical reagent used to differentiate between water-soluble carbohydrate and ketone (>C=O) functional groups, and as a test for reducing sugars and non-reducing sugars, supplementary to the Tollens' reagent test. The test was developed by German chemist Hermann von Fehling in 1849. [1]
An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]
Along with naming brown sugar the 2025 Flavor of the Year, T. Hasegawa’s report predicts other up-and-coming ingredient and flavor trends, along with consumer patterns the company expects to ...
This linkage inhibits further bonding to other saccharide units, and prevents sucrose from spontaneously reacting with cellular and circulatory macromolecules in the manner that glucose and other reducing sugars do. Since sucrose contains no anomeric hydroxyl groups, it is classified as a non-reducing sugar.