Search results
Results from the WOW.Com Content Network
The pancreas and salivary gland make amylase (alpha amylase) to hydrolyse dietary starch into disaccharides and trisaccharides which are converted by other enzymes to glucose to supply the body with energy. Plants and some bacteria also produce amylase. Specific amylase proteins are designated by different Greek letters.
The starch iodine test, a development of the iodine test, is based on colour change, as α-amylase degrades starch and is commonly used in many applications. A similar but industrially produced test is the Phadebas amylase test, which is used as a qualitative and quantitative test within many industries, such as detergents, various flour, grain ...
β-Amylase (EC 3.2.1.2, saccharogen amylase, glycogenase) is an enzyme with the systematic name 4-α-D-glucan maltohydrolase. [ 2 ] [ 3 ] [ 4 ] It catalyses the following reaction: Hydrolysis of (1→4)-α- D -glucosidic linkages in polysaccharides so as to remove successive maltose units from the non-reducing ends of the chains
Saliva on a baby's lips. Saliva (commonly referred to as spit or drool) is an extracellular fluid produced and secreted by salivary glands in the mouth.In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells (from which DNA can be extracted), enzymes (such as lipase and amylase), and antimicrobial agents (such as secretory IgA, and lysozymes).
The occurrence of starch degradation into sugar by the enzyme amylase was most commonly known to take place in the Chloroplast, but that has been proven wrong. One example is the spinach plant, in which the chloroplast contains both alpha and beta amylase (They are different versions of amylase involved in the breakdown of starch and they ...
In serous secretions, the main type of protein secreted is alpha-amylase, an enzyme that breaks down starch into maltose and glucose, [2] whereas in mucous secretions, the main protein secreted is mucin, which acts as a lubricant. [1] In humans, 1200 to 1500 ml of saliva are produced every day. [3]
The liquid quality of the saliva will help in the softening of the food and its enzyme content will start to break down the food whilst it is still in the mouth. The first part of the food to be broken down is the starch of carbohydrates (by the enzyme amylase in the saliva).
Carbohydrase is the name of a set of enzymes that catalyze five types of reactions, turning carbohydrates into simple sugars, from the large family of glycosidases. [1] Carbohydrases are produced in the pancreas, salivary glands and small intestine, breaking down polysaccharides.