Search results
Results from the WOW.Com Content Network
In differential geometry, a -structure is an important type of G-structure that can be defined on a smooth manifold. If M is a smooth manifold of dimension seven, then a G 2 -structure is a reduction of structure group of the frame bundle of M to the compact , exceptional Lie group G 2 .
In differential geometry, an affine manifold is a differentiable manifold equipped with a flat, torsion-free connection. Equivalently, it is a manifold that is (if connected) covered by an open subset of R n {\displaystyle {\mathbb {R} }^{n}} , with monodromy acting by affine transformations .
In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields.
The study of calculus on differentiable manifolds is known as differential geometry. "Differentiability" of a manifold has been given several meanings, including: continuously differentiable, k-times differentiable, smooth (which itself has many meanings), and analytic.
An example of a Riemannian submersion arises when a Lie group acts isometrically, freely and properly on a Riemannian manifold (,). The projection π : M → N {\displaystyle \pi :M\rightarrow N} to the quotient space N = M / G {\displaystyle N=M/G} equipped with the quotient metric is a Riemannian submersion.
Spivak, Michael (1999) A Comprehensive Introduction to Differential Geometry (3rd edition) Publish or Perish Inc. Encyclopedic five-volume series presenting a systematic treatment of the theory of manifolds, Riemannian geometry, classical differential geometry, and numerous other topics at the first- and second-year graduate levels.
The connected sum of two n-manifolds is defined by removing an open ball from each manifold and taking the quotient of the disjoint union of the resulting manifolds with boundary, with the quotient taken with regards to a homeomorphism between the boundary spheres of the removed balls. This results in another n-manifold. [7]
In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.