Search results
Results from the WOW.Com Content Network
The study of calculus on differentiable manifolds is known as differential geometry. "Differentiability" of a manifold has been given several meanings, including: continuously differentiable, k-times differentiable, smooth (which itself has many meanings), and analytic.
In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields.
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus , integral calculus , linear algebra and multilinear algebra .
In differential geometry, a -structure is an important type of G-structure that can be defined on a smooth manifold. If M is a smooth manifold of dimension seven, then a G 2 -structure is a reduction of structure group of the frame bundle of M to the compact , exceptional Lie group G 2 .
An example of a Riemannian submersion arises when a Lie group acts isometrically, freely and properly on a Riemannian manifold (,). The projection π : M → N {\displaystyle \pi :M\rightarrow N} to the quotient space N = M / G {\displaystyle N=M/G} equipped with the quotient metric is a Riemannian submersion.
The connected sum of two n-manifolds is defined by removing an open ball from each manifold and taking the quotient of the disjoint union of the resulting manifolds with boundary, with the quotient taken with regards to a homeomorphism between the boundary spheres of the removed balls. This results in another n-manifold. [7]
In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis (the extension of calculus to stochastic processes ) and of differential geometry .
Manifolds in contemporary mathematics come in a number of types. These include: smooth manifolds, which are basic in calculus in several variables, mathematical analysis and differential geometry; piecewise-linear manifolds; topological manifolds. There are also related classes, such as homology manifolds and orbifolds, that resemble manifolds.