Search results
Results from the WOW.Com Content Network
In geometry, a hendecagon (also undecagon [1] [2] or endecagon [3]) or 11-gon is an eleven-sided polygon. (The name hendecagon , from Greek hendeka "eleven" and –gon "corner", is often preferred to the hybrid undecagon , whose first part is formed from Latin undecim "eleven".
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle , quadrilateral and nonagon are exceptions, although the regular forms trigon , tetragon , and enneagon are sometimes encountered as well.
As with all odd regular polygons and star polygons whose orders are not products of distinct Fermat primes, the regular hendecagrams cannot be constructed with compass and straightedge. [4] However, Hilton & Pedersen (1986) describe folding patterns for making the hendecagrams {11/3}, {11/4}, and {11/5} out of strips of paper. [5]
Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.
Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star polygon with 10 sides; Hendecagram - star polygon with 11 sides; Dodecagram - star polygon with 12 sides; Apeirogon ...
In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3 ...
The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown. There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.
A triangulated polygon with 11 vertices: 11 sides and 8 diagonals form 9 triangles. Every simple polygon can be partitioned into non-overlapping triangles by a subset of its diagonals. When the polygon has n {\displaystyle n} sides, this produces n − 2 {\displaystyle n-2} triangles, separated by n − 3 {\displaystyle n-3} diagonals.