Search results
Results from the WOW.Com Content Network
For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is Δ E p = 1 2 k ( r 2 − r 1 ) 2 {\displaystyle \Delta E_{p}={\frac {1}{2}}k(r_{2}-r_{1})^{2}} where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
A 2-dimensional spring system. In engineering and physics, a spring system or spring network is a model of physics described as a graph with a position at each vertex and a spring of given stiffness and length along each edge. This generalizes Hooke's law to higher dimensions.
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity.
The effective mass of the spring in a spring-mass system when using a heavy spring (non-ideal) of uniform linear density is of the mass of the spring and is independent of the direction of the spring-mass system (i.e., horizontal, vertical, and oblique systems all have the same effective mass). This is because external acceleration does not ...
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
Connecting a spring and damper in series yields a model of a Maxwell material while connecting a spring and damper in parallel yields a model of a Kelvin–Voigt material. [2] In contrast to the Maxwell and Kelvin–Voigt models, the SLS is slightly more complex, involving elements both in series and in parallel.