Search results
Results from the WOW.Com Content Network
1990 – FIRAS on the Cosmic Background Explorer (COBE) satellite measures the black body form of the CMB spectrum with exquisite precision, and shows that the microwave background has a nearly perfect black-body spectrum with T = 2.73 K and thereby strongly constrains the density of the intergalactic medium.
Hubble Space Telescope images showed that the quasar is located at the edge of a large cloud of gas, but no host galaxy was detected for the quasar. The authors of the Hubble study suggested that one possible scenario was that the quasar is located in a dark galaxy. [ 14 ]
It possesses a diffuse core which is the largest known core of any galaxy to date, [5] and contains a supermassive black hole, one of the largest discovered. [5] IC 1101 is located at 354.0 megaparsecs (1.15 billion light-years) from Earth. It was discovered on 19 June 1790, by the British astronomer William Herschel. [6]
The evidence for dark matter also included gravitational lensing of background objects by galaxy clusters, [45] (pp 14–16) the temperature distribution of hot gas in galaxies and clusters, and the pattern of anisotropies in the cosmic microwave background.
A giant radio galaxy is a special class of objects characterized by the presence of radio lobes generated by relativistic jets powered by the central galaxy's supermassive black hole. Giant radio galaxies are different from ordinary radio galaxies in that they can extend to much larger scales, reaching upwards to several megaparsecs across, far ...
Composite image showing how the M87 system looked, across the entire electromagnetic spectrum, during the Event Horizon Telescope's April 2017 campaign to take the first image of a black hole. Requiring 19 different facilities on the Earth and in space, this image reveals the enormous scales spanned by the black hole and its forward-pointing jet.
In the optical this is hidden by the huge amount of dust, and the galaxy is bright in the infrared due to the same reason. Galaxy collisions and mergers were more frequent in the cosmic past: the global star formation rate of the Universe peaked around redshift z = 1...2, and was 10 to 50 times the average value today.
The Perseus galaxy cluster is the brightest cluster in the sky when observed in the X-ray band. [3] The cluster contains the radio source 3C 84 that is currently blowing bubbles of relativistic plasma into the core of the cluster. These are seen as holes in an X-ray image of the cluster, as they push away the X-ray emitting gas.