Search results
Results from the WOW.Com Content Network
Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words. The word2vec algorithm estimates these representations by modeling text in a large corpus.
Based on word2vec skip-gram, Multi-Sense Skip-Gram (MSSG) [35] performs word-sense discrimination and embedding simultaneously, improving its training time, while assuming a specific number of senses for each word. In the Non-Parametric Multi-Sense Skip-Gram (NP-MSSG) this number can vary depending on each word.
Mikolov obtained his PhD in Computer Science from Brno University of Technology for his work on recurrent neural network-based language models. [1] [2] He is the lead author of the 2013 paper that introduced the Word2vec technique in natural language processing [3] and is an author on the FastText architecture.
Gensim includes streamed parallelized implementations of fastText, [2] word2vec and doc2vec algorithms, [3] as well as latent semantic analysis (LSA, LSI, SVD), non-negative matrix factorization (NMF), latent Dirichlet allocation (LDA), tf-idf and random projections.
Word2Vec: [4] Word2Vec is a popular embedding model used in natural language processing (NLP). It learns word embeddings by training a neural network on a large corpus of text. Word2Vec captures semantic and syntactic relationships between words, allowing for meaningful computations like word analogies.
Deeplearning4j includes implementations of the restricted Boltzmann machine, deep belief net, deep autoencoder, stacked denoising autoencoder and recursive neural tensor network, word2vec, doc2vec, and GloVe. These algorithms all include distributed parallel versions that integrate with Apache Hadoop and Spark. [5]
In natural language processing and information retrieval, explicit semantic analysis (ESA) is a vectoral representation of text (individual words or entire documents) that uses a document corpus as a knowledge base.
fastText is a library for learning of word embeddings and text classification created by Facebook's AI Research (FAIR) lab. [3] [4] [5] [6] The model allows one to ...