enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Disregarding loss or gain however, the sum of the kinetic and potential energy remains constant. Kinetic energy can be passed from one object to another. In the game of billiards, the player imposes kinetic energy on the cue ball by striking it with the cue stick. If the cue ball collides with another ball, it slows down dramatically, and the ...

  3. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces , then the mechanical energy is constant.

  4. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Without friction to dissipate a body's energy into heat, the body's energy will trade between potential and (non-thermal) kinetic forms while the total amount remains constant. Any gain of kinetic energy, which occurs when the net force on the body accelerates it to a higher speed, must be accompanied by a loss of potential energy.

  6. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    The value (,) of the Hamiltonian is the total energy of the system, in this case the sum of kinetic and potential energy, traditionally denoted T and V, respectively. Here p is the momentum mv and q is the space coordinate.

  7. Virial theorem - Wikipedia

    en.wikipedia.org/wiki/Virial_theorem

    In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force (where the work done is independent of path), with that of the total potential energy of the system.

  8. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The energy entering through A 1 is the sum of the kinetic energy entering, the energy entering in the form of potential gravitational energy of the fluid, the fluid thermodynamic internal energy per unit of mass (ε 1) entering, and the energy entering in the form of mechanical p dV work: = (+ + +) where Ψ = gz is a force potential due to the ...

  9. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring reaches its maximal potential energy, the kinetic energy of the mass is zero. When the spring is released, it tries to return to equilibrium, and all its potential energy converts to kinetic energy of the mass.