enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  3. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    In mathematics, the NavierStokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  4. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the NavierStokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to:

  5. Kerr–Dold vortex - Wikipedia

    en.wikipedia.org/wiki/Kerr–Dold_vortex

    Kerr and Dold showed that such disturbances exist with finite amplitude, thus making the solution an exact to NavierStokes equations. Introducing a stream function ψ {\displaystyle \psi } for the disturbance velocity components, the equations for disturbances in vorticity-streamfunction formulation can be shown to reduce to

  6. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state NavierStokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the NavierStokes equations reduces it to the momentum balance in the Stokes equations: [1]

  7. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    The Reynolds-averaged NavierStokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition , whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds . [ 1 ]

  8. Astrophysical fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Astrophysical_fluid_dynamics

    Many regular fluid dynamics equations are used in astrophysical fluid dynamics. Some of these equations are: [2] Continuity equations; The NavierStokes equations; Euler's equations; Conservation of mass. The continuity equation is an extension of conservation of mass to fluid flow.

  9. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    The full problem of viscous flow, described by the non-linear NavierStokes equations, is in general not mathematically solvable. However, using his hypothesis (and backed up by experiments) Prandtl was able to derive an approximate model for the flow inside the boundary layer, called boundary-layer theory ; while the flow outside the ...