Search results
Results from the WOW.Com Content Network
The q-value can be interpreted as the false discovery rate (FDR): the proportion of false positives among all positive results. Given a set of test statistics and their associated q-values, rejecting the null hypothesis for all tests whose q-value is less than or equal to some threshold ensures that the expected value of the false discovery rate is .
The value relates to the enthalpy of a chemical reaction or the energy of radioactive decay products. It can be determined from the masses of reactants and products. Q values affect reaction rates. In general, the larger the positive Q value for the reaction, the faster the reaction proceeds, and the more likely the reaction is to "favor" the ...
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.
Q factor (bicycles), the width between where a bicycle's pedals attach to the cranks; q-value (statistics), the minimum false discovery rate at which the test may be called significant; Q value (nuclear science), a difference of energies of parent and daughter nuclides; Q Score, in marketing, a way to measure the familiarity of an item
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
The Q-function is well tabulated and can be computed directly in most of the mathematical software packages such as R and those available in Python, MATLAB and Mathematica. Some values of the Q-function are given below for reference.
The value of the studentized range, most often represented by the variable q, can be defined based on a random sample x 1, ..., x n from the N(0, 1) distribution of numbers, and another random variable s that is independent of all the x i, and νs 2 has a χ 2 distribution with ν degrees of freedom.
The Q-statistic or q-statistic is a test statistic: . The Box-Pierce test outputs a Q-statistic (uppercase) which follows the chi-squared distribution . The Ljung-Box test is a modified version of the Box-Pierce test which provides better small sample properties